由于大模型的結(jié)構(gòu)復(fù)雜,運(yùn)算過(guò)程繁瑣,因此會(huì)面臨更高的計(jì)算復(fù)雜度較高,推理過(guò)程中需要處理的數(shù)據(jù)量和計(jì)算量較大,在推理過(guò)程中,這些因素都會(huì)導(dǎo)致推理速度相對(duì)較慢,從而消耗更多的計(jì)算資源和時(shí)間,對(duì)于一些實(shí)時(shí)性要求較高的任務(wù),大模型可能由于推理速度較慢而出現(xiàn)響應(yīng)延遲的情況。這對(duì)任務(wù)的結(jié)果產(chǎn)生不利影響,因此,在實(shí)際應(yīng)用時(shí),需要根據(jù)實(shí)際應(yīng)用需求,綜合考慮推理速度,計(jì)算資源和時(shí)間等因素,以優(yōu)化推理速度和結(jié)果質(zhì)量。音視貝在智能呼叫中心的基礎(chǔ)上制定了大模型解決方案,為醫(yī)保局提供來(lái)電數(shù)據(jù)存儲(chǔ)分析、智能解答等新型工具。廈門物流大模型產(chǎn)品介紹
那么,AI大模型在醫(yī)療行業(yè)有哪些具體的應(yīng)用呢?
1、病例分析與輔助診斷AI大模型在智慧醫(yī)療領(lǐng)域的應(yīng)用之一是病例分析和輔助診斷。過(guò)去,醫(yī)生通常需要花費(fèi)大量的時(shí)間來(lái)閱讀文獻(xiàn),查找相關(guān)的病例信息進(jìn)行診斷。AI大模型可以通過(guò)學(xué)習(xí)海量的醫(yī)學(xué)文獻(xiàn)和病例數(shù)據(jù)庫(kù)知識(shí),快速提供輔助診療的建議。
2、醫(yī)學(xué)圖像分析與識(shí)別傳統(tǒng)的醫(yī)學(xué)圖像分析通常需要醫(yī)生進(jìn)行手動(dòng)標(biāo)注和識(shí)別,費(fèi)時(shí)費(fèi)力。AI大模型可運(yùn)用自身的技術(shù)能力學(xué)習(xí)大量的醫(yī)學(xué)圖像數(shù)據(jù),自動(dòng)識(shí)別和分析圖像中的病理特征,為醫(yī)生提供有力的參考。
3、藥物研發(fā)與創(chuàng)新AI大模型從大量的化學(xué)信息和生物數(shù)據(jù)中挖掘規(guī)律,預(yù)測(cè)分子結(jié)構(gòu)和活性,幫助科學(xué)家篩選和設(shè)計(jì)出更好的藥物候選物。這種基于機(jī)器學(xué)習(xí)和深度神經(jīng)網(wǎng)絡(luò)的技術(shù)能力可以極大地提高藥物研發(fā)的效率,加速新藥的上市進(jìn)程。
4、問(wèn)診與病例管理AI大模型通過(guò)對(duì)患者病例、檢查報(bào)告與診療記錄信息的解讀,提供智能問(wèn)診的窗口。病人則可以通過(guò)AI大模型聊天工具詢問(wèn)自己的病情,并獲取醫(yī)療方案與調(diào)養(yǎng)方法。 江蘇辦公大模型工具大模型技術(shù)助力社交媒體分析,洞察用戶行為與需求。
在企業(yè)的智能應(yīng)用體系中,本地知識(shí)庫(kù)通常包含一個(gè)結(jié)構(gòu)化的數(shù)據(jù)庫(kù),里面存儲(chǔ)了各種類型的知識(shí),可以通過(guò)搜索功能、權(quán)限管理、協(xié)作功能等,非常方便的對(duì)知識(shí)庫(kù)進(jìn)行管理和利用。
而隨著技術(shù)的進(jìn)步,大語(yǔ)言模型與知識(shí)庫(kù)結(jié)合的技術(shù)方案開始被廣泛應(yīng)用于各個(gè)領(lǐng)域,通過(guò)融合深度學(xué)習(xí)算法與強(qiáng)大的語(yǔ)義理解能力,可以進(jìn)一步提升知識(shí)庫(kù)系統(tǒng)的理解能力和應(yīng)用能力。
所謂大模型本地知識(shí)庫(kù),就是將大型的自然語(yǔ)言處理模型和知識(shí)圖譜結(jié)合在本地,實(shí)現(xiàn)知識(shí)庫(kù)的智能推理與信息推薦,構(gòu)建內(nèi)容豐富、搜索能力強(qiáng)大、功能可擴(kuò)展的新一代智能工具系統(tǒng)。
作為人工智能技術(shù)發(fā)展進(jìn)步的成果,大模型通過(guò)深度學(xué)習(xí)和數(shù)據(jù)訓(xùn)練充分理解人類語(yǔ)言,明確需求,與不同的業(yè)務(wù)場(chǎng)景相融合,可以打造多種智能化工具,實(shí)現(xiàn)客戶服務(wù)、辦公協(xié)作、營(yíng)銷獲客等能力的升級(jí)。其中,金融行業(yè)是大模型人工智能重要的應(yīng)用領(lǐng)域。金融行業(yè)的大模型應(yīng)用是以大數(shù)據(jù)和高等算法為基礎(chǔ),通過(guò)大量的金融數(shù)據(jù)分析和預(yù)測(cè),實(shí)現(xiàn)更具效率、更準(zhǔn)確的決策支持、風(fēng)險(xiǎn)管理、金融評(píng)估、市場(chǎng)預(yù)測(cè)、量化交易、客戶服務(wù)等功能的綜合性應(yīng)用,可以在多個(gè)維度上為金融業(yè)務(wù)的發(fā)展進(jìn)步提供有力支撐。探索大模型應(yīng)用案例,發(fā)現(xiàn)AI如何賦能各行各業(yè)。
現(xiàn)在各行各業(yè)都在接入大模型,讓自家的產(chǎn)品更智能,但事實(shí)情況真的是這樣嗎?
事實(shí)是通用性大模型的數(shù)據(jù)庫(kù)大多基于互聯(lián)網(wǎng)的公開數(shù)據(jù),當(dāng)有人提問(wèn)時(shí),大模型只能從既定的數(shù)據(jù)庫(kù)中查找答案,特別是當(dāng)一個(gè)問(wèn)題我們需要非常專業(yè)的回答時(shí),得到的答案只能是泛泛而談。這就是通用大模型,對(duì)于對(duì)數(shù)據(jù)準(zhǔn)確性要求較高的用戶,這樣的回答遠(yuǎn)遠(yuǎn)不能滿足要求。根據(jù)摩根士丹利發(fā)布的一項(xiàng)調(diào)查顯示,只有4%的人表示對(duì)于ChatGPT使用有依賴。
有沒(méi)有辦法改善大模型回答不準(zhǔn)確的情況?當(dāng)然有。這就是在通用大模型的基礎(chǔ)上的垂直大模型,可以基于大模型和企業(yè)的個(gè)性化數(shù)據(jù)庫(kù),進(jìn)行私人定制,建立專屬的知識(shí)庫(kù)系統(tǒng),提高大模型輸出的準(zhǔn)確率。實(shí)現(xiàn)私有化部署后,數(shù)據(jù)庫(kù)做的越大,它掌握的知識(shí)越多、越準(zhǔn)確,就越有可能帶來(lái)式的大模型應(yīng)用。 大模型的長(zhǎng)處在于能夠找到新的解法,幫助解決新問(wèn)題,解決以后可以在狹窄領(lǐng)域產(chǎn)生大量數(shù)據(jù),訓(xùn)練小模型。廣州金融大模型價(jià)格信息
大模型技術(shù)不僅對(duì)已有行業(yè)進(jìn)行顛覆革新,也催生了許多新模式新業(yè)態(tài)。廈門物流大模型產(chǎn)品介紹
優(yōu)化大型知識(shí)庫(kù)系統(tǒng)需要綜合考慮數(shù)據(jù)庫(kù)存儲(chǔ)、系統(tǒng)架構(gòu)、緩存機(jī)制等多個(gè)方面,還需要考慮任務(wù)隊(duì)列設(shè)計(jì),搜索與算法,定期進(jìn)行壓力測(cè)試,建立監(jiān)控系統(tǒng)等,通過(guò)合理的設(shè)計(jì)和技術(shù)手段,提高系統(tǒng)的性能、穩(wěn)定性和用戶體驗(yàn)。下面我們就來(lái)詳細(xì)說(shuō)一說(shuō)。
首先,對(duì)于一些處理耗時(shí)較長(zhǎng)的任務(wù),如數(shù)據(jù)導(dǎo)入、索引更新等,可以采用異步處理和任務(wù)隊(duì)列技術(shù),將任務(wù)提交到隊(duì)列中,由后臺(tái)異步處理,以避免前臺(tái)請(qǐng)求的阻塞和延遲。
其次,針對(duì)知識(shí)庫(kù)系統(tǒng)的搜索功能,可以優(yōu)化搜索算法和索引結(jié)構(gòu),如使用倒排索引、詞頻統(tǒng)計(jì)等技術(shù),提高搜索結(jié)果的準(zhǔn)確性和響應(yīng)速度。同時(shí),可以根據(jù)用戶的搜索歷史和行為,個(gè)性化推薦相關(guān)的知識(shí)內(nèi)容。
然后,壓力測(cè)試和性能監(jiān)控:進(jìn)行定期的壓力測(cè)試,模擬真實(shí)的并發(fā)情況,評(píng)估系統(tǒng)的性能和穩(wěn)定性。同時(shí),建立性能監(jiān)控系統(tǒng),實(shí)時(shí)監(jiān)測(cè)系統(tǒng)的各項(xiàng)指標(biāo),如響應(yīng)時(shí)間、吞吐量、資源利用率等,及時(shí)發(fā)現(xiàn)和解決潛在的性能問(wèn)題。 廈門物流大模型產(chǎn)品介紹