微光顯微鏡的原理是探測光子發(fā)射。它通過高靈敏度的光學系統(tǒng)捕捉芯片內部因電子 - 空穴對(EHP)復合產生的微弱光子(如 P-N 結漏電、熱電子效應等過程中的發(fā)光),進而定位失效點。其探測對象是光信號,且多針對可見光至近紅外波段的光子。熱紅外顯微鏡則基于紅外輻射測溫原理工作。芯片運行時,失效區(qū)域(如短路、漏電點)會因能量損耗異常產生局部升溫,其釋放的紅外輻射強度與溫度正相關。設備通過檢測不同區(qū)域的紅外輻射差異,生成溫度分布圖像,以此定位發(fā)熱異常點,探測對象是熱信號(紅外波段輻射)。為提升微光顯微鏡探測力,我司多種光學物鏡可選,用戶可依樣品工藝與結構選裝,滿足不同微光探測需求。檢測用微光顯微鏡功能
同時,微光顯微鏡(EMMI)帶來的高效失效分析能力,能大幅縮短研發(fā)周期。在新產品研發(fā)階段,快速發(fā)現(xiàn)并解決失效問題,可避免研發(fā)過程中的反復試錯,加快產品從實驗室走向市場的速度。當市場需求瞬息萬變時,更快的研發(fā)響應速度意味著企業(yè)能搶先推出符合市場需求的產品,搶占市場先機。例如,在當下市場 5G 芯片、AI 芯片等領域,技術迭代速度極快,誰能更早解決研發(fā)中的失效難題,誰就能在技術競爭中爭先一步,建立起差異化的競爭優(yōu)勢。紅外光譜微光顯微鏡方案其搭載的圖像增強算法,能強化微弱光子信號,減少噪聲干擾,使故障點成像更鮮明,便于識別。
通過對這些微光信號的成像與定位,它能直接“鎖定”電性能缺陷的物理位置,如同在黑夜中捕捉螢火蟲的微光,實現(xiàn)微米級的定位。而熱紅外顯微鏡則是“溫度的解讀師”,依托紅外熱成像技術,它檢測的是芯片工作時因能量損耗產生的溫度差異。電流通過芯片時的電阻損耗、電路短路時的異常功耗,都會轉化為局部溫度的細微升高,這些熱量以紅外輻射的形式散發(fā),被熱紅外顯微鏡捕捉并轉化為熱分布圖。通過分析溫度異常區(qū)域,它能間接推斷電路中的故障點,尤其擅長發(fā)現(xiàn)與能量損耗相關的問題。
失效背景調查就像是為芯片失效分析開啟 “導航系統(tǒng)”,能幫助分析人員快速了解芯片的基本情況,為后續(xù)工作奠定基礎。收集芯片型號是首要任務,不同型號的芯片在結構、功能和特性上存在差異,這是開展分析的基礎信息。同時,了解芯片的應用場景也不可或缺,是用于消費電子、工業(yè)控制還是航空航天等領域,不同的應用場景對芯片的性能要求不同,失效原因也可能大相徑庭。
失效模式的收集同樣關鍵,短路、漏電、功能異常等不同的失效模式,指向的潛在問題各不相同。比如短路可能是由于內部線路故障,而漏電則可能與芯片的絕緣性能有關。失效比例的統(tǒng)計也有重要意義,如果同一批次芯片失效比例較高,可能暗示著設計缺陷或制程問題;如果只是個別芯片失效,那么應用不當?shù)目赡苄韵鄬^大。 靜電放電破壞半導體器件時,微光顯微鏡偵測其光子可定位故障點,助分析原因程度。
致晟光電將熱紅外顯微鏡(Thermal EMMI)與微光顯微鏡 (EMMI) 集成的設備,在維護成本控制上展現(xiàn)出優(yōu)勢。對于分開的兩臺設備,企業(yè)需配備專門人員分別學習兩套系統(tǒng)的維護知識,培訓內容涵蓋不同的機械結構、光學原理、軟件操作,還包括各自的故障診斷邏輯與校準流程,往往需要數(shù)月的系統(tǒng)培訓才能確保人員熟練操作,期間產生的培訓費用、時間成本居高不下。而使用一套集成設備只需一套維護體系,維護人員只需掌握一套系統(tǒng)的維護邏輯與操作規(guī)范,無需在兩套差異化的設備間切換學習,培訓周期可縮短近一半,大幅降低了培訓方面的人力與資金投入。
微光顯微鏡可搭配偏振光附件,分析樣品的偏振特性,為判斷晶體缺陷方向提供獨特依據,豐富檢測維度。非制冷微光顯微鏡批量定制
它嘗試通過金屬層邊緣等位置的光子來定位故障點,解決了復雜的檢測難題。檢測用微光顯微鏡功能
微光顯微鏡無法檢測不產生光子的失效(如歐姆接觸、金屬短路),且易受強光環(huán)境干擾;熱紅外顯微鏡則難以識別無明顯溫度變化的失效(如輕微漏電但功耗極低的缺陷),且溫度信號可能受環(huán)境熱傳導影響。
實際分析中,二者常結合使用,通過 “光 - 熱” 信號交叉驗證,提升失效定位的準確性。致晟光電在技術創(chuàng)新的征程中,實現(xiàn)了一項突破性成果 —— 將熱紅外顯微鏡與微光顯微鏡集可以集成于一臺設備,只需一次采購,便可以節(jié)省了重復的硬件投入。 檢測用微光顯微鏡功能