電極材料是電氧化技術的重要部分,其催化活性、穩(wěn)定性和成本直接決定應用可行性。目前研究較多的包括金屬氧化物電極(如Ti/RuO?、Ti/PbO?)、BDD電極及碳基電極(如石墨、碳氈)。Ti/RuO?電極具有高析氧電位(1.6 V vs. SHE),適合處理含氯廢水,但易發(fā)生析氧副反應;Ti/PbO?電極成本較低且催化活性強,但長期運行后Pb溶出可能造成二次污染。BDD電極因其化學惰性和超高氧析出電位(>2.3 V)成為難降解有機物處理的理想選擇,但制備成本限制了大規(guī)模應用。未來趨勢是開發(fā)復合涂層電極(如SnO?-Sb/Ti)或非貴金屬催化劑,以兼顧性能與經濟性。智能電極系統(tǒng)實現(xiàn)遠程監(jiān)控。安徽海水淡化電極
隨著全球對清潔能源的需求不斷增加,電解水制氫作為一種高效、環(huán)保的制氫方式,受到關注。鈦電極在電解水制氫過程中發(fā)揮著關鍵作用。鈦基二氧化銥陽極和鈦基鉑陰極分別在析氧和析氫反應中表現(xiàn)出優(yōu)異的電催化性能,能夠降低反應的過電位,提高電解效率。通過優(yōu)化鈦電極的結構和涂層性能,可以進一步提高電解水制氫的效率和降低能耗。同時,鈦電極的穩(wěn)定性和長壽命確保了電解水制氫設備能夠長期穩(wěn)定運行,為大規(guī)模制氫提供了可靠的技術支持,對推動氫能產業(yè)的發(fā)展具有重要意義。北京循壞水電極除硬系統(tǒng)電化學系統(tǒng)維護簡單方便。
垃圾滲濾液成分復雜(含腐殖酸、氨氮、重金屬等),電氧化可同步實現(xiàn)有機物降解和脫氮。以Ti/RuO?-IrO?陽極為例,在Cl?存在下,氨氮通過間接氧化轉化為N?(選擇性>70%),同時COD去除率達60-80%。關鍵問題在于滲濾液的高鹽分(如Na?、K?)可能導致電極腐蝕,需采用耐鹽涂層(如Ti/Pt)或預處理脫鹽。此外,耦合生物處理(如前置厭氧消化)可降低電耗,而脈沖電源模式能減少電極鈍化。中試研究表明,處理成本約為8-12元/噸,具備規(guī)模化應用潛力。
為克服單一電氧化的局限性,常將其與光催化、臭氧氧化或生物處理聯(lián)用。例如,電氧化-光催化(EO-PC)系統(tǒng)中,TiO?光陽極在紫外光激發(fā)下產生電子-空穴對,與電生成的·OH協(xié)同降解污染物,對雙酚A的礦化率比單獨電氧化提高40%。電氧化-生物耦合工藝(如前置電氧化提高廢水可生化性)可降低能耗,適用于高濃度有機廢水。此外,電氧化與膜過濾結合(如電化學膜生物反應器)能同步實現(xiàn)污染物降解和固液分離,但需解決膜污染和電極-膜模塊集成設計問題。電化學除垢技術使結垢速率降低80%以上。
鈦電極具有良好的穩(wěn)定性,包括化學穩(wěn)定性和機械穩(wěn)定性。在長期的電化學過程中,其表面的活性涂層不易發(fā)生脫落、溶解或結構變化,能夠保持穩(wěn)定的電催化性能。同時,鈦基體的度和良好的韌性,使得電極在受到機械振動、熱應力等外界因素影響時,依然能夠保持結構完整。例如,在電解水制氫設備中,鈦電極需要在連續(xù)的電解過程中保持穩(wěn)定的工作狀態(tài),其化學和機械穩(wěn)定性確保了設備的長期穩(wěn)定運行,減少了因電極性能下降而導致的設備停機維護次數(shù)。電化學-膜技術實現(xiàn)循環(huán)水零排放。北京海水淡化電極設備
電化學阻垢劑再生復用次數(shù)達10次。安徽海水淡化電極
循環(huán)水系統(tǒng)中微生物滋生會導致生物粘泥、管道腐蝕和換熱效率下降,電極電化學技術可通過原位生成殺菌劑(如活性氯、臭氧和羥基自由基)實現(xiàn)高效消毒。以鈦基涂層電極(Ti/RuO?-IrO?)為例,在含氯循環(huán)水中電解產生次氯酸(HClO),當有效氯濃度維持在0.5-2 mg/L時,對異養(yǎng)菌的殺滅率超過99.9%。相比傳統(tǒng)化學加藥(如二氧化氯),電化學法具有精細控量、無藥劑殘留的優(yōu)勢。系統(tǒng)設計需考慮電流密度(通常1-5 mA/cm2)、流速(>0.5 m/s防止結垢)和電極壽命(涂層穩(wěn)定性>5年)。某石化廠案例顯示,該技術使殺菌成本降低40%,且避免了化學藥劑對設備的腐蝕風險。安徽海水淡化電極