solve/scalar - 標量情況(單變量和方程)solve/series - 求解含有一般級數(shù)的方程solve/system - 解方程組或不等式組第5章 操作表達式5.1 處理表達式Norm - 代數(shù)數(shù) (或者函數(shù)) 的標準型Power - 惰性冪函數(shù)Powmod -帶余數(shù)的惰性冪函數(shù)Primfield - 代數(shù)域的原始元素Trace - 求一個代數(shù)數(shù)或者函數(shù)的跡charfcn -表達式和**的特征函數(shù)Indets - 找一個表達式的變元invfunc - 函數(shù)表的逆powmod - 帶余數(shù)的冪函數(shù)Risidue - 計算一個表達式的代數(shù)余combine -表達式合并(對tan,cot不好用)Python是一種通用編程語言,結合NumPy和SciPy等庫,可以進行高效的科學計算和數(shù)據(jù)分析。浦東新區(qū)定制科學計算軟件供應
expand -表達式展開Expand - 展開表達式的惰性形式expandoff/expandon - 抑制/不抑制函數(shù)展開5.2 因式分解Afactor - ***因式分解的惰性形式Afactors - ***因式分解分解項列表的惰性形式Berlekamp - 因式分解的Berlekamp 顯式度factor - 多元的多項式的因式分解factors - 多元多項式的因式分解列表Factor - 函數(shù)factor 的惰性形式Factors - 函數(shù)factors 的惰性形式polytools[splits] - 多項式的完全因式分解第6章 化簡6.1 表達式化簡118simplify - 給一個表達式實施化簡規(guī)則simplify/@ - 利用運算符化簡表達式simplify/Ei - 利用指數(shù)積分化簡表達式寶山區(qū)定制科學計算軟件24小時服務特點:界面簡潔明了,功能布局合理,易于上手;
MatrixMatrixMultiply 計算兩個矩陣的乘積MatrixVectorMultiply 計算一個矩陣和一個列向量的乘積VectorMatrixMultiply 計算一個行向量和一個矩陣的乘積MatrixPower 矩陣的冪MinimalPolynomial 構造矩陣的**小多項式Minor 計算矩陣的子式Multiply 矩陣相乘Norm 計算矩陣或向量的p-范數(shù)MatrixNorm 計算矩陣的p-范數(shù)VectorNorm 計算向量的p-范數(shù)Normalize 向量正規(guī)化NullSpace 計算矩陣的零度零空間OuterProductMatrix 兩個向量的外積Permanent 方陣的不變量Pivot 矩陣元素的主元消去法PopovForm Popov 正規(guī)型
★ Maple - CAD系統(tǒng)雙向連接:通過CAD Link為CAD系統(tǒng)增加重要的分析功能,如統(tǒng)計、優(yōu)化、單位和公差計算等,結果在CAD模型中自動更新,支持SolidWorks,NX,和 Autodesk Inventor。★Excel:Excel數(shù)據(jù)的輸入和輸出;通過加載項,在Excel內(nèi)使用Maple計**令。★ 專業(yè)出版工具包括文件處理工具,可輸出Maple文件為PDF、HTML、XML、Word、LaTeX、和MathML格式文件?!?數(shù)據(jù)庫:對大型數(shù)據(jù)集完成分析和可視化?!颩ATLAB連接:您可以使用MATLAB Link在Maple中調用MATLAB完成計算,以及利用MATLAB代碼生成和轉換的功能;另一個選擇是Maple Toolbox for Matlab工具箱,Maple-Matlab雙向連接,共享數(shù)據(jù)、變量等。ANSYS:用于工程仿真和有限元分析,廣泛應用于機械、土木、航空等領域。
GetResultShape 返回矩陣或向量運算的結果形狀GivensRotationMatrix 構造 Givens 旋轉的矩陣GramSchmidt 計算一個正交向量集HankelMatrix 構造一個 Hankel 矩陣HermiteForm 計算一個矩陣的 Hermite 正規(guī)型HessenbergForm 將一個方陣約化為上 Hessenberg 型HilbertMatrix 構造廣義 Hilbert 矩陣HouseholderMatrix 構造 Householder 反射矩陣IdentityMatrix 構造一個單位矩陣IsDefinite 檢驗矩陣的正定性,負定性或不定性IsOrthogonal 檢驗矩陣是否正交IsUnitary 檢驗矩陣是否為酉矩陣IsSimilar 確定兩個矩陣是否相似Julia:一種高性能的編程語言,專為科學計算而設計,具有良好的性能和易用性。浦東新區(qū)定制科學計算軟件供應
它們提供了強大的數(shù)值計算能力和靈活的編程接口,可以滿足各種復雜的計算需求。浦東新區(qū)定制科學計算軟件供應
Beta - Beta函數(shù)EllipticModulus - 模數(shù)函數(shù)k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函數(shù)GaussAGM - Gauss 算術的幾何平均數(shù)JacobiAM, ., - Jacobi 振幅函數(shù)和橢圓函數(shù)JacobiTheta1, JacobiTheta4 - Jacobi theta函數(shù)JacobiZeta - Jacobi 的Zeta函數(shù)KelvinBer, KelvinBei - Kelvin函數(shù)KummerM, - Kummer M函數(shù)和U函數(shù)LambertW - LambertW函數(shù)LerchPhi - 一般的Lerch Phi函數(shù)LommelS1, LommelS2 - Lommel函數(shù)MeijerG - 一個修正的Meijer G函數(shù)Psi - Digamma 和Polygamma函數(shù)StruveH, StruveL - Struve函數(shù)WeierstrassP - Weierstrass P函數(shù)及其導數(shù)浦東新區(qū)定制科學計算軟件供應
甘茨軟件科技(上海)有限公司是一家有著雄厚實力背景、信譽可靠、勵精圖治、展望未來、有夢想有目標,有組織有體系的公司,堅持于帶領員工在未來的道路上大放光明,攜手共畫藍圖,在上海市等地區(qū)的數(shù)碼、電腦行業(yè)中積累了大批忠誠的客戶粉絲源,也收獲了良好的用戶口碑,為公司的發(fā)展奠定的良好的行業(yè)基礎,也希望未來公司能成為行業(yè)的翹楚,努力為行業(yè)領域的發(fā)展奉獻出自己的一份力量,我們相信精益求精的工作態(tài)度和不斷的完善創(chuàng)新理念以及自強不息,斗志昂揚的的企業(yè)精神將引領甘茨軟件供應和您一起攜手步入輝煌,共創(chuàng)佳績,一直以來,公司貫徹執(zhí)行科學管理、創(chuàng)新發(fā)展、誠實守信的方針,員工精誠努力,協(xié)同奮取,以品質、服務來贏得市場,我們一直在路上!