近年來研究者發(fā)現(xiàn)石墨烯由于它獨(dú)特的零帶隙結(jié)構(gòu),對(duì)所有波段的光都無選擇性的吸收,且具有超快的恢復(fù)時(shí)間和較高的損傷閾值。因此利用石墨烯獨(dú)特的非線性可飽和吸收特性將其制作成可飽和吸收體應(yīng)用于調(diào)Q摻鉺光纖激光器、被動(dòng)鎖模光纖激光器已經(jīng)成為超快脈沖激光器研究領(lǐng)域的熱點(diǎn)。2009年,Bao等[82]人使用單層石墨烯作為鎖模光纖激光器的可飽和吸收體首先實(shí)現(xiàn)了通信波段的超短孤子脈沖輸出,脈沖寬度達(dá)到了756fs。他們證實(shí)了由于泡利阻塞原理,零帶隙材料石墨烯在強(qiáng)激光激發(fā)下可以容易的實(shí)現(xiàn)可飽和吸收,而且這種可飽和吸收是與頻率不相關(guān)的,即石墨烯作為可飽和吸收體可實(shí)現(xiàn)對(duì)所有波長的光都有可飽和吸收作用。GO的摻量對(duì)于水泥復(fù)合材料的提升效果也有差異。新型氧化石墨有哪些
目前醫(yī)學(xué)界面臨的一個(gè)棘手的難題是對(duì)大面積骨組織缺損的修復(fù)。其中,干細(xì)胞***可能是一種很有前途的解決方案,但是在干細(xì)胞的移植過程中,需要可促進(jìn)和增強(qiáng)細(xì)胞成活、附著、遷移和分化并有著良好生物相容性的支架材料。研究已表明氧化石墨烯(GO)具有良好的生物相容性及較低的細(xì)胞毒性,可促進(jìn)成纖維細(xì)胞、成骨細(xì)胞和間充質(zhì)干細(xì)胞(mesenchymalstemcells,MSC)的增殖和分化[82],同時(shí)GO還可以促進(jìn)多種干細(xì)胞的附著和生長,增強(qiáng)其成骨分化的能力[83-84]。因此受到骨組織再生領(lǐng)域及相關(guān)領(lǐng)域研究人員的關(guān)注,成為組織工程研究中一種很有潛力的支架材料。GO不僅可以單獨(dú)作為干細(xì)胞的載體材料,還可以加入到現(xiàn)有的支架材料中,GO不僅可以加強(qiáng)支架材料的生物活性,同時(shí)還可以改善支架材料的空隙結(jié)構(gòu)和機(jī)械性能,包括抗壓強(qiáng)度和抗曲強(qiáng)度。GO表面積及粗糙度較大,適合MSC的附著和增殖,從而可促進(jìn)間充質(zhì)干細(xì)胞的成骨分化,而這種作用程度與支架中加入GO的比例成正比。制造氧化石墨價(jià)格調(diào)控反應(yīng)過程中氧化條件,減少面內(nèi)大面積反應(yīng),減少缺陷,提升還原效率。
太赫茲技術(shù)可用于醫(yī)學(xué)診斷與成像、反恐安全檢查、通信雷達(dá)、射電天文等領(lǐng)域,將對(duì)技術(shù)創(chuàng)新、國民經(jīng)濟(jì)發(fā)展以及**等領(lǐng)域產(chǎn)生深遠(yuǎn)的影響。作為極具發(fā)展?jié)摿Φ男录夹g(shù),2004年,美國**將THz科技評(píng)為“改變未來世界的**技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國家支柱**重點(diǎn)戰(zhàn)略目標(biāo)”**,舉全國之力進(jìn)行研發(fā)。傳統(tǒng)的寬帶THz波可以通過光整流、光電導(dǎo)天線、激光氣體等離子體等方法產(chǎn)生,窄帶THz波可以通過太赫茲激光器、光學(xué)混頻、加速電子、光參量轉(zhuǎn)換等方法產(chǎn)生。
氧化石墨烯經(jīng)還原處理后,對(duì)于提高其導(dǎo)電性、比表面等大有裨益,使得石墨烯可以應(yīng)用于對(duì)于導(dǎo)電性、導(dǎo)熱性等要求更高的應(yīng)用中。在還原過程,含氧官能團(tuán)的去除和控制過程本身也可成為石墨烯改性的一種方式,根據(jù)還原方式的不同得到的石墨烯也具有不同的特性和應(yīng)用場景。例如,通過熱還原方式得到的還原氧化石墨烯結(jié)構(gòu)、形貌、組分可通過還原條件進(jìn)行適當(dāng)?shù)恼{(diào)控。Dou等1人介紹了在氬氣流下在1100-2000°C的溫度范圍內(nèi)進(jìn)行熱處理得到的石墨烯結(jié)構(gòu)和吸附性能的研究。所得到石墨烯粉體材料的表面積增加至超過起始前驅(qū)體材料四倍,對(duì)氧化石墨烯進(jìn)行熱還原處理提高了氧化石墨烯的熱學(xué)性能,賦予了氧化石墨烯材料熱管理方面的應(yīng)用。氧化石墨片層的厚度約為1.1 ± 0.2 nm。
由于較低的毒性和良好的生物相容性,石墨烯材料在細(xì)胞成像方面**了一股研究熱潮。石墨烯及其衍生物本身具有特殊的平面結(jié)構(gòu)和光學(xué)性質(zhì),或者經(jīng)過熒光染料分子標(biāo)記之后,可用于體外細(xì)胞與***光學(xué)成像[63-66],使其在**顯像和***方面具有很大的應(yīng)用前景。Dai課題組[67]***利用納米尺寸的聚乙二醇功能化氧化石墨烯(GO-PEG)的近紅外發(fā)光性質(zhì)用于細(xì)胞成像。他們將抗體利妥昔單抗(anti-CD20)與納米GO-PEG共價(jià)結(jié)合形成納米GO-PEG-anti-CD20,然后將納米GO-PEG和納米GO-PEG-anti-CD20與B細(xì)胞或T細(xì)胞在培養(yǎng)液中4℃培養(yǎng)1h,培養(yǎng)液中納米GO-PEG的濃度大約為0.7mg/ml,結(jié)果發(fā)現(xiàn)B細(xì)胞淋巴瘤具有強(qiáng)熒光,而T淋巴母細(xì)胞的熒光強(qiáng)度則很弱。另外,通過對(duì)GO進(jìn)行80℃熱處理17天后,再利用200W的超聲對(duì)GO溶液處理2h,得到的GO在紫外光(266–340nm)的照射下顯示出藍(lán)色熒光。氧化石墨中存在大量親水基團(tuán)(如羧基與羥基),在水溶液中容易分散。制備氧化石墨復(fù)合材料
氧化石墨烯(GO)的厚度只有幾納米,具有兩親性。新型氧化石墨有哪些
在光通信領(lǐng)域,徐等人開發(fā)了飛秒氧化石墨烯鎖模摻鉺光纖激光器,與基于石墨烯的可飽和吸收體相比,具有性能有所提升,并且具有易于制造的優(yōu)點(diǎn)[95],這是GO/RGO在與光纖結(jié)合應(yīng)用**早的報(bào)道之一。在傳感領(lǐng)域,Sridevi等提出了一種基于腐蝕布拉格光柵光纖(FBG)外加GO涂層的高靈敏、高精度生化傳感器,該方法在檢測刀豆球蛋白A中進(jìn)行了試驗(yàn)[96]。為了探索光纖技術(shù)和GO特性結(jié)合的優(yōu)點(diǎn),文獻(xiàn)[97]介紹了不同的GO涂層在光纖樣品上應(yīng)用的特點(diǎn),還分析了在傾斜布拉格光柵光纖FBG(TFBG)表面增加GO涂層對(duì)折射率(RI)變化的影響,論證了這種構(gòu)型對(duì)新傳感器的發(fā)展的適用性。圖9.14給出了歸一化的折射率變化數(shù)據(jù),顯示了這種構(gòu)型在多種傳感領(lǐng)域應(yīng)用的可能。新型氧化石墨有哪些