模仿自然界生物結(jié)構(gòu)的金屬打印設(shè)計正突破材料極限。哈佛大學(xué)受海螺殼啟發(fā),打印出鈦合金多級螺旋結(jié)構(gòu),裂紋擴展阻力比均質(zhì)材料高50倍,用于抗沖擊無人機起落架。另一案例是蜂窩-泡沫復(fù)合結(jié)構(gòu)——空客A320的3D打印艙門鉸鏈,通過仿生蜂窩設(shè)計實現(xiàn)比強度180MPa·cm3/g,較傳統(tǒng)鍛件減重35%。此類結(jié)構(gòu)依賴超細(xì)粉末(粒徑10-25μm)和高精度激光聚焦(光斑直徑<30μm),目前能實現(xiàn)厘米級零件打印。英國Renishaw公司開發(fā)的五激光同步掃描系統(tǒng),將大型仿生結(jié)構(gòu)(如風(fēng)力渦輪機主軸承)的打印速度提升4倍,成本降低至$220/kg。
3D打印的鈦合金建筑節(jié)點正提升高層建筑抗震等級。日本清水建設(shè)開發(fā)的X型節(jié)點(Ti-6Al-4V ELI),通過晶格填充與梯度密度設(shè)計,能量吸收能力達傳統(tǒng)鋼節(jié)點的3倍,在模擬阪神地震(震級7.3)測試中,塑性變形量控制在5%以內(nèi)。該結(jié)構(gòu)使用粒徑53-106μm粗粉,通過EBM技術(shù)以0.2mm層厚打印,成本高達$2000/kg,未來需開發(fā)低成本鈦粉回收工藝。迪拜3D打印辦公樓項目中,此類節(jié)點使建筑整體抗震等級從8級提升至9級,但防火涂層(需耐受1200℃)與金屬結(jié)構(gòu)的兼容性仍是難題。江西鈦合金物品鈦合金粉末品牌電弧增材制造(WAAM)技術(shù)利用鈦合金絲材,實現(xiàn)大型航空航天結(jié)構(gòu)件的低成本快速成型。
可拉伸金屬電路需結(jié)合剛?cè)崽匦?,銀-彈性體復(fù)合粉末成為研究熱點。新加坡南洋理工大學(xué)開發(fā)的Ag-PDMS(聚二甲基硅氧烷)核殼粉末(粒徑10-20μm),通過SLS選擇性激光燒結(jié)打印的導(dǎo)線拉伸率可達300%,電阻變化<5%。應(yīng)用案例包括:① 智能手套的3D打印觸覺傳感器,響應(yīng)時間<10ms;② 可穿戴心電監(jiān)測電極,皮膚貼合阻抗低至10Ω·cm2。挑戰(zhàn)在于彈性體組分(PDMS)的耐溫性——激光能量需精確控制在燒結(jié)銀顆粒(熔點961℃)而不碳化彈性體(分解溫度350℃),目前通過脈沖激光(脈寬10ns)將局部溫度梯度維持在10^6 K/m。
鎳基高溫合金(如Inconel 718、Hastelloy X)是航空發(fā)動機渦輪葉片的主要材料。3D打印可制造內(nèi)部冷卻流道等傳統(tǒng)工藝無法實現(xiàn)的復(fù)雜結(jié)構(gòu),使葉片耐溫能力突破1000℃。然而,高溫合金粉末的打印面臨兩大難題:一是打印過程中易產(chǎn)生元素偏析(如Al、Ti的蒸發(fā)),需通過調(diào)整激光功率和掃描速度優(yōu)化熔池穩(wěn)定性;二是后處理需結(jié)合固溶強化和時效處理,以恢復(fù)γ'強化相分布。美國NASA通過EBM(電子束熔化)技術(shù)打印的Inconel 718渦輪盤,抗蠕變性能提升15%,但粉末成本高達$300-500/kg。未來,低成本回收粉末的再利用技術(shù)或成行業(yè)突破口。 鈦合金3D打印技術(shù)正推動個性化假牙制造的發(fā)展。
全固態(tài)電池的3D打印鋰金屬負(fù)極可突破傳統(tǒng)箔材局限。美國Sakuu公司采用納米鋰粉(粒徑<5μm)與固態(tài)電解質(zhì)復(fù)合粉末,通過多噴頭打印形成3D多孔結(jié)構(gòu),比容量提升至3860mAh/g(理論值90%),且枝晶抑制效果明顯。正極方面,NCM811粉末與碳納米管(CNT)的梯度打印使界面阻抗降低至3Ω·cm2,電池能量密度達450Wh/kg。挑戰(zhàn)在于:① 鋰粉的惰性氣氛控制(氧含量<1ppm);② 層間固態(tài)電解質(zhì)薄膜打?。ê穸?lt;5μm);③ 高溫?zé)Y(jié)(200℃)下的尺寸穩(wěn)定性。2025年目標(biāo)實現(xiàn)10Ah級打印電池量產(chǎn)。
金屬粉末的球形度提升技術(shù)是當(dāng)前材料研發(fā)的重點。西藏冶金鈦合金粉末合作
太空探索中,3D打印技術(shù)正從“地球制造”轉(zhuǎn)向“地外資源利用”。NASA的“月球熔爐”計劃提出利用月壤中的鈦鐵礦(FeTiO?)與氫還原技術(shù),原位提取鈦、鐵等金屬元素,并通過激光燒結(jié)制成結(jié)構(gòu)件。實驗表明,月壤模擬物經(jīng)1600℃熔融后可打印出抗壓強度超20MPa的墻體模塊,密度為地球鋁合金的60%。歐洲航天局(ESA)則開發(fā)了太陽能聚焦系統(tǒng),直接在月球表面熔化月壤粉末,逐層建造輻射屏蔽層,減少宇航員暴露于宇宙射線的風(fēng)險。但挑戰(zhàn)在于月壤的高硅含量(約45%)導(dǎo)致打印件脆性明顯,需添加2-3%的粘結(jié)劑(如聚乙烯醇)提升韌性。未來,結(jié)合機器人自主采礦與打印的閉環(huán)系統(tǒng),或使月球基地建設(shè)成本降低70%。